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Based on the film theory of mass transfer, relations were developed for determining the reaction 
factor in the case of an irreversible chemical reaction of an arbitrary order, when the mass transfer 
of reaction components proceeds countercurrentIy across the phase boundary. The relations 
make it possible to determine the rate of the process in a heterogeneous liquid system for the 
chemical reaction proceeding on both sides of the phase boundary. 

Considerable attention has been devoted in the literature to the theory of mass 
transfer with a simultaneous chemical reaction and the results of numerous authors 
have been compiled in excellent monographs 1

,2. Theoretical solutions of the problem 
have been aimed mainly at applications on absorption with a chemical reaction 
and, consequently, only those cases have been studied when the reaction proceeds 
in one phase and when, followingly, unidirectional transport is involved of one or 
more reaction components across the interface. In two-phase liquid systems, a che­
mical reaction may proceed simultaneously in both phases and the transfer of 
reaction components between the phases occurs in both directions. 

It is the purpose of this work to establish relations for the calculation of the rate 
of the process for an irreversible reaction 

A + vB -+ products 

proceeding simultaneously in both phases with its rate in the homogeneous phase 
described by the kinetic equation 

(1) 

We assume that component A enters the system dissolved in phase (A) and component B 
in phase (B). A necessary condition for the reaction to proceed in phase (A) is a nonzero con­
centration of component B at the interface in phase (A), ctA > 0, which requires a certain non-
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zero value of the solubility of component B in phase (A). The similar condition for the reaction 
in phase (B) is a nonzero concentration of component A at the interface in phase (B), ctB > 0, 
which necessitates a partial solubility of component A in phase (B). If these conditions are satis­
fied and the chemical reaction proceeds in both phases, mass transfer occurs of component A 
across the phase boundary into phase (B) and of component B into phase (A). 

Mass transfer of component A may be expressed with the help of the reaction factor rp AB 

by the relation 

(2) 

and, similarly, mass transfer of component B 

(3) 

and, simultaneously, Eqs (2) and (3) define the reaction factors rp AB and rpBA for the given 
case. 

If v mol of component B react with one mol of component A in phase (B) during the reaction, 
we can express the total rate of the process by the amount of component A which reacts in a time 
unit and in a volume unit of the two-phase reaction mixture by the relation 

(4) 

Besides the mass transfer coefficients k AB' kBA and the magnitude of the specific interfacial area a 
it is necessary to know for evaluation of Eq. (4) the values of the reaction factors and concentra­
tions at the interface. 

As the choice of components A and B is arbitrary for a given reaction system and the relations 
describing the diffusion with a chemical reaction are analogous for both phases, it is sufficient 
to find the expression for only one of the reaction factors, e.g. for the reaction factor fo r compo­
nent A in phase (B), if> AB' The expression for the factor rpBA is then obtained by interchanging 
the indices. In developing the relations for the factor rp AB ' which will be denoted from now on as 
rp, we will consider transport processes in phase (B) into which component A diffuses from the 
phase interface. For the sake of simplicity, the index of phase (B) will be deleted also for the re­
maining variables. As shown by Hikita and Asai3 and Brian4 for the solution of this problem 
in the case of the reaction in one phase, the results based on the film and penetration theories 
do not differ significantly from one another from a practical point of view. As the formulation 
of the problem in the film theory makes it possible to arrive at an approximate solution in a sim­
pler way, this approach will 'be used here in developing working formulas. At the same time 
we will assume that the transport of reaction products inside the phase and across the phase 
interface does not affect the diffusion of reaction components. 

THEORETICAL 

Mass transfer with a simultaneous chemical reaction whose rate is expressed by Eq. (1) 
is described by the differential equations 

(5) 
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Boundary conditions are given by 

x = b, C A = 0, CB = C~. 

Rod: 

(6) 

(7) 

(8) 

A solution of this problem for a special case of JB = 0 was obtained by Hikita and 
Asai3

. By using the transformation relations 

(9)-(11) 

and after some manipulation, Eqs (5) and (6) assume the form of 

(12), (13) 

where the dimensionless parameters M and Q are defined by 

M = kR(c:)P (c~)q b2 /DAc: = kR(c:)P-l (c~)q DA/k!, Q = DBC~/vDAC: . 

(14), (15) 

If we introduce a further dimensionless parameter R denoting the ratio of the amounts 
of component B transferred across the phase interface and reacted in the reaction 
phase considered 

it is possible to express the boundary conditions in the transformed variables as 

z = 0, a = 1, db/dz = Rrf> , 

z=l, a=O, b=Q. 

(16) 

(17) 

(18) 

By combining the relation for the mass flux of component A across the phase inter­
face 

(19) 

the definition of the reaction factor (2), the relation kA = D A/b, and transformations 
(9) and (11), we obtain the following expression for the reaction factor 
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tP = -(da/dz)z=o . (20) 

Double integration of Eq. (13) with boundary conditions (17) and (18) combined 
with relation (20) leads to the following relation for the dimensionsless concentra­
tions of the reaction components 

b = a + Q - tP( R + 1)( 1 - z) . (21) 

The maximum value of the reaction factor may reach 

tPmax = (Q + l)/(R + 1) (22) 

as follows from Eq. (21) if we require that the value of b be positive also for z = O. 
As the value of the reaction factor cannot be lower than unity, it is obvious from 
relation (22) that R, i.e. the ratio of the amounts of component B transferred between 
the phases and reacted in phase (B), cannot exceed the ratio Q, so that it holds 

O~R~Q. (23) 

Inserting b from Eq. (21) into Eq. (12) we obtain a nonlinear differential equation 
for variable a 

(24) 

which generally does not possess the exact analytical solution. 

Because a more direct and graphically expressible solution may be obtained from 
Eq. (24) for p = q = 1, e.g. for the special case of the reaction of the first order 
with respect to both components, we shall consider firstly this case. 

We search for an approximate solution of Eq. (24) in the form 

a = sinh [r(1 - z)]/sinh r (25) 

which is formally identical with the exact solution of this equation for a reaction 
of the pseudofirst order when Q ~ 00. Differentiating function (25) and inserting 
into Eq. (20) we obtain a relation for the reaction factor 

tP = r/tanh r. (26) 
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For determining the constant r we use the collocation method; by inserting function 
(25) and its second derivative into the differential equation (24) and solving for 
z = 0 we get 

r = y'{M[1 + Q - tP(R + l)]jQ} . (27) 

Eqs (26) and (27) enable an iterative calculation of the reaction factor tP. For R = 0, 
relation (27) reduces to the solution found by van Krevelen 5 • 

For a rapid determination of tP we may use advantageously the graphical inter­
pretation known from the solution for R = O. Relation (27) can be namely formally 
transformed into the form corresponding to this case, i.e. 

(28) 

if we set 

Mo = M(1 - RjQ) , Qo = (Q - R)j(R + 1) = tPmax - 1. (29), (30) 

The generalized graph for the calculation of reaction factor, which makes use of re­
lations (29) and (30), is depicted in Fig. 1. 

General Case r = kRC~C~ 

As shown by Hikita and Asai3 for the solution of a similar problem for the transfer 
of one reaction component across the phase interface (R = 0), the reaction factor 
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may be well approximated by relation (26) even for this general form of the kinetic 
equation if the parameter r is expressed by 

r = CP' y'(b(0)/b(1))q . (31) 

The effect of exponent p is included in the reaction factor for the limiting case of a fast 
reaction of the pseudo-pth order, CP', for which an exact relation may be found 3 

CP' = y'{2M/(p + 1)} . (32) 

If the concentration ratio in Eq. (31) is expressed with the help of Eq. (21), we get 
for the special case of p = q = 1 a relation identical with relation (27). This agree­
ment entitIes us to assume that the procedure can be used to approximate the reac­
tion factor also in the general case for transfer of both reaction components across 
the phase interface and for exponents in the kinetic equation different from unity. 
By combining relations (21), (31) and (32) we get for the parameter r an expression 

r = y'{2M{[1 + Q - CP(R + 1)]/Q}Q/(p + 1)} (33) 

which, together with relations (26), makes it possible to calculate by an iterative 
procedure the magnitude of the reaction factor with a general form of the kinetic 
equation. 

DISCUSSION 

The validity of proposed relations (26) and (33) has been verified numerically by sol­
ving the corresponding differential equations (12) and (13) on a Tesla 200 computer. 
The accuracy of the approximate expression for the reaction factor has been examined 
in the following range of variables: p(O -;- 3), q(O -;- 3), y'M(2 -;- 250), Q(2 -;- 250) 
R(O -;- 25). Characteristic concentration profiles of the reaction components in the 
diffusional film obtained from this numerical solution are illustrated in Fig. 2. 

The values of the reaction factor calculated according to relations (26) and (33) 
in particular series of combinations of different exponents p and q were on the whole 
somewhat lower than those obtained from the numerical solution except for some 
series with exponent p lower than unity. The relative error 8 for the determination 
of the reaction factor at given parameters y'M and Q increases with increasing 
exponent q a.nd in the region of CP-values far from ¢rnax also with increasing ratio Q, 
as the approximation implies a constant concentration of component b in the dif­
fusional film equal to the value at the phase interface, b = b(O). For R < 1, the rela­
tive error 8 does not exceed the value of 6%; it is, however, always substantially lower 
in the region of higher values of y'M. Largest deviations are found for the comb ina-
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tion of exponents p = 0 and q = 3; in the most unfavourable case (R = 25), 
i.e. for the reaction proceeding in the given phase only to a negligible extent, a de­
viation of 19% was established. Taking into account that the portion of the reacted 
amount in the given phase is 1/(1 + R) of the total reacted amount in both phases, 
the relative error in the determination of the reaction factor will lead to a relative 
error of e/(1 + R) in the total reacted amount, i.e. in the mentioned case to the error 
of only 0'7%. As the calculated values of 8/(1 + R) do not exceed in any case the 
limit of 10%, it is possible to conclude that the proposed relations enable to calculate 
the rate of the process in a two-phase system with sufficient accuracy. Simultaneously, 
it is to be expected that the reacted amount will be determined with a higher accuracy 
for that phase in which the reaction proceeds to a larger extent. It follows from 
a comparison with literature data 3 ,6 that the accuracy of the determination of the 
total reacted amount is comparable with that of the relations reported for systems 
with a reaction proceeding in one phase. 

~ 
a 

LIST OF SYMBOLS 

reduced concentration of component A (Eq. (9» 
specific interfacial area, m2/m3 

b reduced concentration of component B (Eq. (10» 

concentration of the reaction component, kmol/m 3 

diffusivity, m2 Is 
mass flux, kmol/m 2 s 
mass transfer coefficient, mls 
reaction constant, k mol1 - p - q m3(p+q) Is 
dimensionless parameter (Eq. (14» 

p, q exponents in the equation for the reaction rate 
Q dimensionless parameter (Eq. (15» 

reaction rate, kmol/m 3 s 
R dimensionless parameter (Eq. (16» 
x distance from the interface, m 

reduced distance from the interface 
thickness of the film, m 
relative error in the determination of the reaction factor 

cP reaction factor 
stoichiometric coefficient 

Superscripts 

+ at the interface 
in the bulk of liquid 

Subscripts 

A component A 
B component B 
AB component A in phase (B) 
BA component B in phase (A) 
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